

## A Potential Role for eLoran in Aviation Surveillance

### James Carroll, Ph. D. US DOT/RITA/Volpe Center

Presented at the

International Loran Association 35<sup>th</sup> Annual Convention and Technical Symposium Mystic Marriott Hotel and Spa, Groton, CT

October 24, 2006

U.S. Department of Transportation Research and Innovative Technology Administration



## Rationale for Analysis and Selection of a GPS Backup Strategy

- Automatic Dependent Surveillance-Broadcast (ADS-B) has been identified by the FAA as a key element of the Next Generation Air Traffic System (2025)
- ADS-B is a GPS-based surveillance technology that enables equipped aircraft or surface vehicles to broadcast their identification, position, altitude, velocity, and other information
- FAA's Joint Resources Council (JRC) identified a viable backup strategy as a key issue for ADS-B implementation (Sep 05). Backup architecture to be resolved before next JRC meeting (Feb 07)
- ADS-B technical Work Group tasked to select at least one backup strategy that meets proposed rule, and perform trade space & sensitivity analyses (Nov 06)





### **Technical Team Charter**

- Recommend an approach for mitigating the impact of a loss of GPS on future NAS surveillance (ADS-B)
- Methodology entails: GPS vulnerabilities and fail impacts, evaluation criteria, candidate mitigation strategies, sensitivity analysis, recommendation

### GPS failure scenario

- Focuses on unintentional and planned (testing) interference; SPS L1 only
- Nominal outage: GPS unusable as a position source for ADS-B within a 40-60nm radius for 3-4 days; outage can occur anywhere in the NAS
- Must also consider impacts of loss of positioning due to single-aircraft avionics failures and RAIM outages

### • Evaluation Metrics

- Operational capability & coverage
- Technical maturity
- Independence

- Flexibility/agility
- Global interoperability





# Assumptions (by 2020)

- General
  - GPS outages (or degradations) due to interference, RAIM holes, or single-aircraft avionics failures must be considered
  - Assumed nominal outage: 40-60nm radius, 3-4 days
- Positioning Infrastructure
  - GPS L5 will be available
  - 21 "healthy" GPS satellites with 0.98 probability
  - Dual frequency WAAS can be available
  - 27 operational Galileo satellites + 3 spares in orbit by 2015, with 3 frequencies for aviation (E5a, E5b, & L1)
  - eLoran ground infrastructure, including database for location-based conductivity factors (ASFs), *can* be in place and operational
  - DME/DME navigation capability will be supported at least in en route airspace (24K+ feet, Rockies; 18K+ feet elsewhere), without reverting to inertial
- Surveillance Systems also are addressed

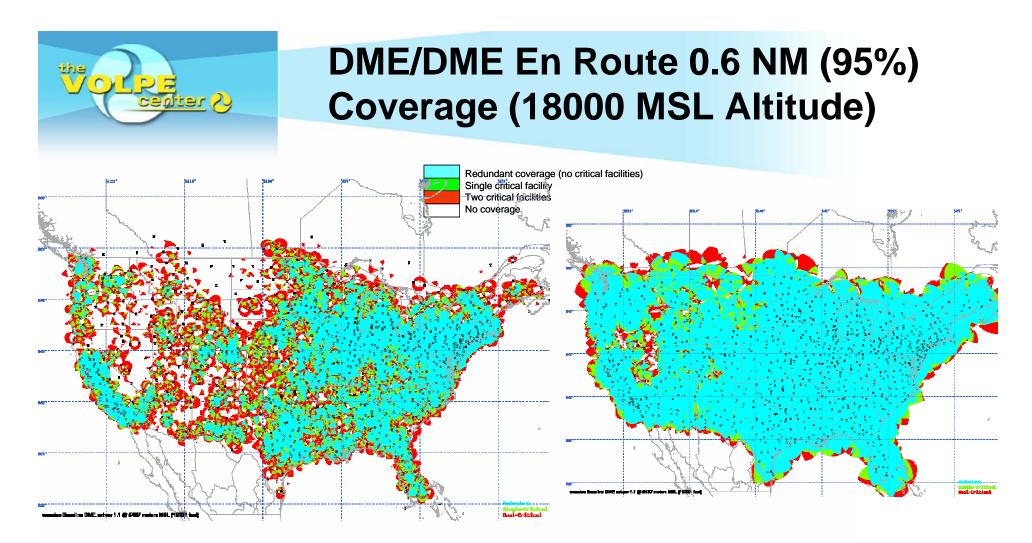


## Potential Backup Technologies and Methods (from preliminary Phase)

- Surveillance
  - Secondary Surveillance Radar (SSR)
  - Primary Surveillance Radar
  - Passive multilateration (listen only)
  - Active multilateration (interrogate/reply)
- Navigation
  - DME/DME/IRU
  - DME/DME
  - eLoran
  - IRU only
  - Satellite Navigation (SBAS, L5, Galileo)
  - VOR/DME, LOC/DME, MLS/RNAV
- Procedural Separation

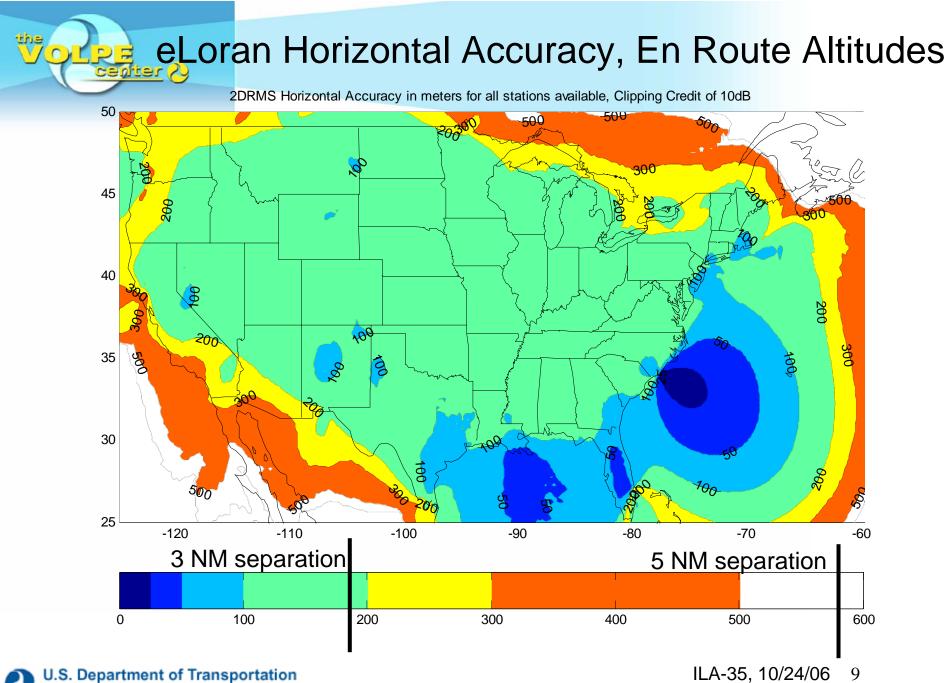
### Initial, Qualitative Assessment

- Technologies/methods fall into one of the following categories:
  - Meets all minimum criteria for at least one airspace type
    - Secondary Radar, Primary Radar, Passive and Active Multilateration
  - Meets most criteria, with uncertainty regarding certain metrics
    - DME/DME/IRU, SSR, eLoran, Satellite Navigation Only
  - Does not or will not meet minimum criteria
    - IRU Only, VOR/DME, LOC/DME, MLS/RNAV, Procedural Separation
- Alternatives assessed to date are based on technologies that fall into the first category
  - A set of <u>eight</u> "strategies," most involving more than one technology, were postulated


ter 💫



# Strategies Involving SSR, DME/DME/IRU and <u>eLoran</u>


- Strategy 5
  - SSR in high density terminal areas and used for all aircraft in event of GPS disruption
  - DME/DME/IRU (AT) and eLoran (GA) provided for medium density areas (Class A airspace, and Class C/D above current CENRAP floor)
  - eLoran (GA) provided for other areas
- Strategy 6
  - SSR in high density terminal areas and used for all aircraft in event of GPS disruption
  - DME/DME/IRU with SATNAV (AT) and eLoran (GA) provided for medium density areas
  - SATNAV (AT) and eLoran (GA) provided for low density areas





Current coverage (with range dependency)

Current coverage if range dependency eliminated



Research and Innovative Technology Administration



# eLoran Operational Capability

- Multi-year Congressional-directed program to evaluate Loran capability for aviation
  - 2004 FAA Report of Loran Integrity and Performance Panel concluded RNP-0.3 performance in CONUS is feasible; correction factors (ASFs) needed
  - Variety of flight tests thus far validates report
- Conservative model predictions state RNP 0.3 capability with current infrastructure in 95% of CONUS
- Conductivity correction factors (ASFs) will be needed for 5 nm separation in medium density
  - At least one correction per airport
    - Corrections would be published and maintained in a database
    - May need additional corrections for seasonal variation and effect at different altitudes
  - Correction factor for medium-density terminal surveillance would also enable RNP-0.3 approach capability at affected airports
- Requirements for 9th pulse communications (station ID, integrity, etc.)
  - No augmentation assumed necessary to 9<sup>th</sup> pulse structure or format

## **eLoran Evaluation - Other Metrics**

#### • Technical Maturity

dier 💫

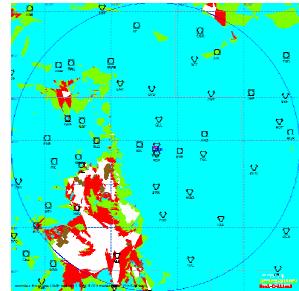
- Immature: No standards or avionics equipment available
- MOPS could be developed in 2 to 3 years, equipment available ~two years after that (2011-2012)
  - Equipment only anticipated if user cost-benefit arises, current market not inclined to invest in new Loran receiver design

### • Flexibility/Agility

- USG to decide on continued operation (end CY06)
- Provides ubiquitous coverage, provides tactical and strategic flexibility within CONUS
  - Provided stations are operational
  - More challenging in Alaska
- Long-term viability related to other applications (e.g., timing)
  - If retained, multiple Agencies would be involved in system operation and could affect system performance
  - Some degree of performance dependent on Canadian stations

### • International Compatibility

- No international standards or ICAO acceptance, but
  - If FAA made decision to retain Loran and recommend it as international standard, may be able to adopt international standards due to other State's interests
  - Coverage unlikely to expand beyond existing (US, Europe, Russia) due to initial infrastructure costs






# **Cost Implications, DME/DME/IRU**

- DME coverage
  - Challenging in western US even to achieve 1.2 nm accuracy
  - Challenging at low altitudes even to achieve 0.6 nm
  - Achieving Final Program Requirement performance is <u>not feasible</u>

**DENVER** Coverage example



ILA-35, 10/24/06 12





# **Cost Implications, eLoran**

- Major recapitalization/modernization of ground system (\$160M)
  - 18 U.S. CONUS stations, 6 in AK, 5 Canadian
  - Potential need to add one or more stations to enhance performance
  - Recent atmospheric modeling advances may mitigate this need
  - Canadian stations enhance NAS performance
- Life cycle (incremental) costs TBD
- Would require new avionics once standards are complete
  - Estimates vary significantly depending on integration issues
    - eLoran can be integrated within same unit as GPS
  - Feasibility of common GPS/Loran receiver demonstrated
    - Would affect cabling from antenna to receiver



## Scoring Has Just Begun ...

| Metric                               | Steering Cmte<br>Weighting |
|--------------------------------------|----------------------------|
| Operational Capability<br>& Coverage | 0.3                        |
| Technical Maturity                   | 0.25                       |
| Independence                         | 0.11                       |
| Flexibility/Agility                  | 0.16                       |
| Global Interoperability              | 0.18                       |



- eLoran has major risks to overcome, under currently approved rules
  - ADS-B business case constraints
  - 50,000 potential "customers" (GA aircraft)
  - Lack of standards and avionics
  - "Rice bowl" mentality
  - Will industry buy in?
- From a purely technical perspective, eLoran can be a cost-beneficial backup